The Advertising in Free-to-play Games: A Game Theory Analysis

Yu Chen
The Chinese University of Hong Kong, Shenzhen, China
yuchen@link.cuhk.edu.cn

Haishan Duan
The Chinese University of Hong Kong, Shenzhen, China
haishanduan@link.cuhk.edu.cn

Wei Cai
The Chinese University of Hong Kong, Shenzhen, China
caiwei@cuhk.edu.cn

ABSTRACT
With the rapid market growth of free-to-play games, how to choose a proper revenue model becomes an important problem for the game provider. The classical method is the in-game purchase. To utilize the large install base of the free-to-play games, numerous game providers have also adopted advertising. This paper analyzes the mixing revenue model of the in-game purchase (premium subscription) and advertising. Taken the player's snobbery into consideration, we prove the mixing revenue model existing equilibrium in a two-stage Stackelberg model. The experimental result provides theoretical support in the design of the revenue model of the free-to-play games.

CCS CONCEPTS
• Applied computing → Economics; Computer games.

KEYWORDS
free-to-play, in-game purchase, videogame, game theory

1 INTRODUCTION
The game industry witnesses rapid market growth in recent years, especially mobile games, which shows great chances for game providers. It is reported that over 75% of APPs revenue came from mobile game purchases in 2018 [6]. On the mobile platform, the free-to-play (F2P) games are the most popular revenue model. In the F2P model, the game provider offers the free service simultaneously with the premium service. The premium services can be a part of the gameplay or a better game experience that cannot be accessed without the payment of players. The method to set the discrimination is not the key point of this work. Simultaneously, we mainly pay attention to how the player enters the premium and the economic model under these circumstances.

The in-game purchase is the most general method applied by game providers. Under this revenue model, the player would use real currency to exchange virtual currency or unblock premium modules through the micro-transaction (e.g., Pokemon GO 1 and Clash of Clans 2). The profit of this revenue model is only contributed by a small number of players, where there is a report that pointed only 1-5 percent of users purchase virtual items in F2P games [13]. These players are called “whales.” It is reported that 0.19% whales contribute half of the revenue in F2P games [2]. However, most players are freeloaders. These players cannot profit directly to game providers and suffer a reduced game experience compared with those premium players. With the stiff competition in the F2P game market, the game providers start thinking about monetizing the large install base of the F2P player.

To solve the fore-mentioned problem, the game providers adopt the advertising incentive by introducing the advertisers into the market. The advertising incentive method monetizes the player's playtime, which means the players can access the premium modules by watching in-game ads. Theoretically, players contribute to the profit of the game provider so long as players spend time in the game. This kind of revenue model is distinguished in the F2P games, which is relatively easy to place ads. A large and stable install base can support the long run of the advertising revenue model.

Some off-the-shelf games also adopt the mixed revenue model of both in-game purchase and advertising like the Tuski 3 and the Summer Pop 4. In this revenue model, the players can either monetize the playtime by ads watching or directly pay with real currency [9]. The profit comes from the willingness of those “whales” and the playtime of the freeloaders. The success of the commercial application has proved this model. However, few academic research discussed the mixed freemium revenue model (hereafter, we call this revenue model the mixed model). The theoretical analysis of the mixed model is emerging and vital with the growth of the market. In this paper, we use the game theory to analyze the mixed model and prove the game provider, players, and advertisers’ equilibrium. The experimental results demonstrate the mixed model is a win-win-win strategy for the game provider, players, and advertisers. After that, we also take an insight into the mixed model and give some suggestions for the practices.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

GameSys ’21, September 28–October 1, 2021, Istanbul, Turkey
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8437-7/21/09...
https://doi.org/10.1145/3458335.3460812

The rest of the paper is arranged as follows. Section 2 provides a literature review of F2P games and the advertising in games. The methodology adopted in this work is described in Section 3. Section 4 presents notations and the model. The result of the analysis is shown in Section 5. Finally, we conclude our work in Section 6.

2 RELATED WORK
We review the literature on freemium economics and advertising in games in this section.

2.1 The free videogame business model
With the rising of the game industry, many works about game economics and its pricing strategy have been known to the public. Vesa Pulkkinen [12] discussed how game companies design different kinds of game mechanics to make the player behave in a wanted economic way in mobile games. Greg Mangan [8] built a game-theoretic model of firm and consumer under the freemium pricing model and showed that it is generally an optimal choice for firms in the face of uncertainty over their customers’ willingness to pay. Mishra et al. [10] consider the optimal pricing of a freemium product offered by a firm to consumers who are less averse and showed that the consumer behavior counters the common expectation that when the firm has more available units, it should sell them cheaper to avoid the risk of unsold inventory. Meng et al. [9] studied how the virtual selling strategy leads to different market outcomes than the traditional real selling strategy where players can purchase the premium module using real currency directly. Geng et al. [3] established a model to facilitate the trade-off study in the pricing of virtual goods between increasing the total installed base and maintaining scarcity, which revealed that the firm earns a growing profit by ratcheting up the premium price as the intensity of snobbery increases beyond a certain threshold. The works mentioned above have comprehensively studied the pricing and economics problem in F2P games, but they do not consider the advertisement rewarding, which commonly appears in current F2P games. Therefore, in this paper, we will discuss the situation under advertising placement in F2P games.

2.2 Advertisement In free Videogame
To reduce the negative effect of in-game purchases while keeping a substantial income, the provider can adopt advertisement incentives in their game ecosystem. The advertising in the F2P game is also discussed in [7]. The effect of ads in video games is discussed both by the view of providers and customers in [5] and [11]. The advertisement slots created by operators are sold to advertisers who want to promote their brands or products. At the same time, the operators will offer virtual assets to players who spent time watching advertisements. In this business model, since players’ playtime becomes valuable, operators can benefit from the advertisers instead of charging the players directly. Although the operator shares a part of the surplus with advertisers, the mechanism of gameplay becomes relatively more fair and sustainable. This mode benefits the long term running of the game because the players are more likely to have a longer playing time, and the model can also extend the game life cycle.

We consider the “wear-out” effect of the advertisement in this work. The ads aim to broadcast the advertisers’ products or their brand. The ad watchers, players in F2P games, were impressed by repeating showing of ads content. However, the ad watchers may feel aesthetic fatigue when the same content occurs frequently. Hence, the relation of the number of ad watching v.s. the broadcasting effect is first increasing then decreasing. In [14], the authors consider the rewards of advertisement watching in the cellphone data plan. They use a quadratic equation to capture the wear-out effect. We adopt a similar method to present the wear-out effect in our model.

3 METHODOLOGY
We specifically focus on the analysis of one video game in this work. The only game provider monopolized the market. The game provider offers all the sales strategies and gameplay. The provider aims to maximize its revenue with the negligible marginal cost. We only consider the long-run revenue after the investment in game development—operating costs and server maintenance costs are negligible. Hence, the marginal of the provider is zero in the model. These assumption are generally adopted by many video games economics studies [4] [10]. For keeping the snobbery of the premium players and encouraging the heavy users subscribing the premium, the provider should set the upper bound of the advertising incentives to freemium players. Otherwise, the snobbery of the premium player makes no sense when the freemium player can access the full experience of the premium player just by watching ads. The value gap between the premium and freemium promises the snobbery.

The video game is not Necessity good. Most video game players are searching for fun in the game. We assume that all the players are rational, making decisions with the best payoff of his/her player type. No players choose to compromise with the payoff between 0 and optimal. The preference of players is the user type, a parameter reflecting the valuation of the game. Therefore, we can modernize the complicated player’s subjective preferences in one parameter.

Advertisers purchase ad slots and broadcast their products or brands through advertisements. The wear-out effect is taken into consideration. The advertising impression of the ad is not positive linear correlated with the number of ads. Players may be fatigue with the same content and the overall advertising effect decreases. The advertiser should decide the number of ad slots to purchase to optimize its payoff.

We model the interactions among the operators, players, and advertisers by a two-stage Stackelberg game. Both players and advertisers are followers after the decision of the game provider.

In Stage I, the provider offers gameplay to players. The income of the provider comes from direct virtual asset selling and advertisement slot selling. The aim of the provider is to maximize its income. The provider should decide the price of the premium, the incentive coefficient of the ad watching (i.e., how many virtual coins award to each completion of ad watching), and the price of the slot for the advertisers. In Stage II, the players should decide whether to enter the premium. If the player chooses to be a freeloader, he/she should then decide the number of advertisements to watch. The strategy is for maximizing players’ payoff. The payoff function consists of
three parts, the gain of gameplay utility, the extra incentive by premium or ad watching, and a fixed cost of playing (i.e., time cost, network fees, and electrical bills). Moreover, the advertisers decide the number of ad slots to purchase. The brand promotion effect is related to both the number of slots purchased and the average utility of the players watching the ad.

Similar to many other classical Stackelberg games, we will try to use backward induction to analyze the behavior of each party in the game. This paper aims to formulate key aspects in the game and find out potential equilibrium with reasonable explanations.

4 MODEL

In this section, we define the notations and payoff functions for players, advertisers, and the provider.

4.1 Player

In this work, we denote the total number of players as N_p. The player type θ is a distribution in $\theta \in [0, \theta_{max}]$ denoted as $g(\theta)$. $\theta = 0$ means the game is meaningless to the player. When $\theta = 1$, the valuation of the game to the player is equal to the game provider’s design. θ can also be larger than 1, which means the valuation to the player is even larger than what the game provider expects. Without loss of generality, we set the $g(\theta)$ as the uniform distribution. The θ affects the player’s valuation of the game. Larger θ means the player acquires higher utility from the gameplay service.

In the freemium revenue model, we define the provider as the monopoly that sells gameplay to players and advertisement slots to advertisers. It provides two service qualities to the player: S_{free} as basic service free to all players and S_{premium} as premium service to subscribers. The value discrepancy between two versions is $\Delta = S_{\text{premium}} - S_{\text{free}} > 0$, which is similar with the definition in previous work [3]. In the case of this work, we assume that the player would not access to the advertisement incentive as long as they enter the premium subscription. The ad-free feature contributes to part of Δ, the value discrepancy.

Then we can obtain the gameplay utility term μ.

$$\mu = \theta[(1 - r)S_{\text{free}} + rS_{\text{premium}}], r \in \{0, 1\} \quad (1)$$

where r is a binary indicator of whether the player subscribing to the premium plan. Once the player becomes the premium, all the ads will be removed for a better game experience. The premium player automatically gives up the incentive by watching ads.

Besides the utility of gameplay itself, the snobbery externality is also taken into players’ payoff function. The premium players’ snobbery comes from the feeling of superiority to freemium players. It is a complex affective factor. In our model, we only consider the effect of the安装 base on the snobbery. That is, the snobbery externality gain is a function $b(\cdot)$ related to the number of active players N_p. The snobbery is positively related to the total number of active players N_p. On the other side, the price of the premium will degrade the total payoff gain of snobbery externality. For premium players, the snobbery externality can be represented as

$$E = \theta b(N_p) - p_p. \quad (2)$$

The advertising incentive gives partial premium experience to freemium players. Instead of directly purchasing with real currency, freemium players spend their playtime and game experience to acquire the premium. The experience they get should not equal or larger than the real premium players. Otherwise, no rational player would subscribe to the premium. The revenue model degrades to pure advertising. In our model, the rewarding premium experience is homogeneous for all ad slots. A factor γ is the percentage of experience gap Δ rewarding to the freemium player. The time cost in terms of game utility is not in liner with the number of ads watching. More ad watching makes the game experience reducing more. Thereinto, the time cost function $c(\cdot)$ is an increasing concave function with respect to the number of ads watching m. For freemium players, the snobbery externality can be defined as

$$E = \theta \gamma m \Delta - c(m), \quad (3)$$

The non-monetary fixed cost for freemium and premium players are assumed to be the same (playing time, network traffic fees, etc.) and denoted as C. Here the time cost is for the time other than watching ads, this fixed cost part for both premium player and freemium player are the same. We then get the payoff function of the player:

$$p_{\text{player}}(r, m) = \mu + E - C \quad (4)$$

4.2 Advertiser

Assume there are K advertisers in the market. N_s is the total ad slots created by players, which is denoted as

$$N_s = \int_0^{\theta_{max}} (1 - r)g(\theta)m^* (\theta, \gamma)d\theta \quad (5)$$

As the related work part, the player might be tired of watching ads. We consider the “wear-out” effect in advertising as a quadratic relationship between the ad repetition and the advertising’s effectiveness [14][1]. We define Φ as a quadratic function of the ratio of N_{ad} and N_s. Hence, in our model, the notation of Φ is

$$\Phi = B(N_{ad}/N_s) - A(N_{ad}/N_s)^2 \quad (6)$$
where $A, B > 0$ are constant hyper-parameter determined by practice. The payoff function of advertisers is the brand broadcasting effectiveness Φ minus the cost of purchasing the ad slots, shown as

$$p_{\text{advertiser}} = \Phi - p_a N_{ad}$$

(7)

4.3 Provider

The gameplay provider’s payoff function consists of two parts: the premium subscription fees and ad slots selling. The marginal cost for the provider is negligible. And the cost term hence is fixed in the payoff function of the provider and does not affect the optimal decision of the provider; we leave out the cost term in the analysis. Therefore, the payoff function of the provider is defined as

$$p_{\text{provider}}(p_g, p_a, \gamma) = p_g N_{pp} + p_a K N_{ad}^*$$

(8)

where N_{pp} is the number of premium subscription.

5 RESULT

In this section, we analyze the two-stage game. Ads are removed for premium players. They cannot get rewards by watching ads. Backward induction is adopted in the analysis of the Stackelberg game. We first get the optimal strategies in stage II, then stage I.

5.1 Player Decisions in Stage II

Given the premium subscription price p_g and ad incentive factor γ, a θ type player solves the problem:

$$\max_{r \in \{0,1\}, m \in \mathbb{Z}} \quad p_{\text{player}}(\theta, r, m, \gamma)$$

s.t. $rm = 0$

$$ym \leq 1$$

(9)

Where the constrain $rm = 0$ limits the player choice of either premium subscription or advertisement incentive. Ads are removed for the premium players. The constrain $ym \leq 1$ limits the maximal ad incentive rewarding. The freemium player can only experience part of premium modules. The strategies for different player types are different. We emphasize some important player types next.

First, denote θ_0 as the entering player type. Player will play the game only when player’s θ larger than $\theta_0 = \frac{C}{s_{\text{free}}}$. All player with player types less than θ_0 neither subscript premium nor watch ads.

The payoff increasing for freemium player is limited. The rational freemium player would watch no more ads than $m^*(\theta, \gamma) = c^{-1}(\theta \gamma \Delta)$. Here, $c^{-1}(\cdot)$ is the inverse function of $c(\cdot)$. If the The maximum payoff for a freemium player in type θ is

$$P_{\text{free}}^* = \theta S_{\text{free}} + \theta y m^* \Delta - c(m^*) - C$$

(10)

In the mean time, the payoff function of the player type θ entering premium is:

$$P_{\text{premium}} = \theta S_{\text{premium}} + \theta b(N_p) - p_g - C$$

(11)

The player is willing to enter the premium only when $P_{\text{free}}^* < P_{\text{premium}}$. Hence, we can get the edge condition that it is the same for the player to choose the premium or freemium. We denote it as θ_1.

$$\theta_1 = \frac{c(m^*) - p_g}{\Delta + y m^* \Delta - b(N_p)}$$

(12)

all player type larger than θ_1 will enter the premium.
5.2 advertiser Decisions in Stage II

Given p_a and $γ$, advertisers should solve the optimal of:

$$\max_{N_{ad} \in \mathbb{Z}} \mathcal{P}^\text{advertiser} (N_{ad}; p_a; γ)$$

where the payoff \mathcal{P} is given in 7. The optimal strategy of the advertisers is then in three cases.

Case 1: When $N_s = 0$. In this case, no available ad slots generated by the players. This case may cause by the low install base or the low ad incentive. The advertisers will not purchase any slot, $N_{ad} = 0$.

Case 2: when $p_a \geq \frac{B}{N_s} - \frac{2A}{N_s}$, the ad price is expensive than advertisers expectation. Although there may be enough ad slot, advertisers would not purchase any ad slot, $N_{ad} = 0$.

Case 3: when $0 \leq p_a \leq \frac{B}{N_s} - \frac{2A}{N_s}$, the optimal number of ad to purchase is

$$N_{ad}^\ast (p_a; γ) = \frac{B}{2A} N_s - \frac{p_a}{2A} N_s^2$$

In equation 14, N_{ad}^\ast decreases with the degree of wear-out effect A. The result is consistent with a previous study with a similar wear-out effect definition. Higher ad slot price also makes advertisers buy fewer slots.

5.3 Provider Decisions in Stage I

The provider obtains revenue from both premium subscriptions and ad selling. The number of premium is:

$$N_{pp} = N \int_{θ_s}^{θ_{max}} g(θ) dθ$$

and other parameters are defined before. Hence, the provider’s problem in stage I formulate as:

$$\max_{p_a, p_p} \mathcal{P}^\text{provider} (p_p, p_a; γ)$$

s.t. $KN_{pp}^\ast (p_a; γ) \leq N_s(γ)$

The constrain means the provider should guarantee enough ads slot providing to advertisers. It balances the selling of premium and ad slots for a healthy market. Further auction mechanisms for ad slots may be introduced to eliminate this constraint and increase the game provider’s market surplus.

The objective function of the optimization problem can be denoted as

$$\mathcal{P}^\text{provider} (p_p, p_a; γ) = p_p N_{pp} + p_a K(\frac{B}{2A} N_s - \frac{p_a}{2A} N_s^2).$$

We see that the game provider decides the advertising market. Advertisers would always purchase the ad slot generated by players. The game provider’s strategy focus on the price of the premium subscription p_p and the incentive strength $γ$. If we utilized $γ = p_a N_s$, the objective function would be converted to

$$\mathcal{P}^\text{provider} (p_p, p_a; γ) = p_p N_{pp} + p_a K(\frac{B}{2A} N_s - \frac{p_a}{2A} N_s^2 N_s).$$

All terms in the equation 18 are non-negative. The second and third term are only related to $γ$. We can calculate the optimal $γ$, which can be denoted as $p_a N_s = \frac{B}{7}$. Hence, we solve the optimal value of $\mathcal{P}^\text{provider}$ by first analyze the optimal $N_{pp}^\ast (γ)$ then substitute $γ^\ast$ into the origin objective function. Finally with the optimal $γ$ and N_s we can get the optimal p_a.

In model part, we have assumed that the time cost function $c(\cdot)$ is a non-decreasing convex function with respect to $θ$ and $γ$. Then the N_s is increasing with $γ$. The advertising revenue is increasing with the incentive strength. The number of premium subscriptions N_{pp} is related to $θ_1$. A lower value of $θ_1$ means more player types will subscribe to the premium. From equation 12, we can see that $θ_1$ keeps the convexity with respect to $γ$. The optimal $θ_1$ to get the largest $p_p N_{pp}$ can then be calculate.

![Figure 5: The relationship between N_s and $θ$ under different $γ$ settings.](image)

5.4 Numerical Analysis

For numerical simulation, we set the total number of active users to one million, that is, $N_p = 1,000,000$. For the convenience of calculation, we set $θ_{max} = 1$ and the uniform distribution $g(θ) ∈ [0, 1]$. Assuming that the percentage of freemium players is $θ_f = 80\%$, that is $r(θ) = 1$ if $θ ∈ [0.8, 1]$. And we set the time cost function as $c(x) = e^x + 1$ with the value discrepancy between the premium service and freemium service $Δ = 100$. Therefore, we can obtain the simulation of the total ad slots created by players N_s as shown in Fig. 5. Lower $γ$ makes the player type with low player type $θ$ giving up to watch ads. However, N_s increases faster with larger player type with low $γ$. Large $θ$ players choose to watch more ads when the incentive $γ$ is low. Their desire for rewarding do not reduce by the low incentive of each ad.

Next, we discuss the value of N_{ad}^\ast based on the calculated N_s above. We set $p_a = 0.5$, $A = 40000$, $B = 80000$. We can calculate the corresponding $N_{ad}^\ast = 45510.71$. We can see that the specific value of N_{ad}^\ast depends on the values of p_a, A, and B. In fact, p_a is the price of each advertisement, which can be changed in the real environment. But A and B can’t be changed in real life. They are parameters fitted by data Bayes, which are hyperparameters. But in the simulation, we can change the value of A and B to study the relationship between N_{ad}^\ast and N_s.

Based on the previous setting, we change the values of p_a, A and B in turn to obtain three curves of N_{ad}^\ast versus N_s. It is not difficult
with A of the different both the peak value and the size of the advertising market. At last, N of B shows the N on how the parameters will influence A height of the peak. The larger p to find that when a_d and B take different values, the peak height and peak position of a quadratic function will be affected at the same time; when A takes different values, it will only affect the height of the peak. The larger A in real environment, the larger the N^* calculated by N_a.

After the discussion of the impact factor about N_a, we will focus on how the parameters will influence N^*_{ad}. At first, we will consider the degree of wear-out effect A and B. The first sub-figure in Fig. 6 shows the N^*_{ad} changing with different A. In this simulation, we set $B = 5000$ and $P_a = 0.5$. The hyper-parameter A affects the peak value of N^*_{ad} only. The size of the advertising market is independent with A. And the second sub-figure in Fig. 6 illustrates the variation of N^*_{ad} with different B, where $A = 5000$ and $P_a = 0.5$. Here B affect both the peak value and the size of the advertising market. At last, the different P_a also present significant impact of the N^*_{ad} with $A = 5000$ and $B = 5000$. It shows that advertisers are sensitive to the price p_a. The N^*_{ad} is greatly reduced when the price p_a becomes higher.

6 CONCLUSION

This work analyses the coexist of advertising incentives and premium subscriptions in the F2P video game. We model the decision strategies of the game provider, the players, and the advertisers in the market with a two-stage Stackelberg game leading by the game provider. We investigate the effect of introducing advertising incentives to the premium subscription. We found the equilibrium existing in this F2P revenue model. By introducing the advertisers into the market, players can monetize the playtime to gain a higher total play experience. The game provider gets a new revenue channel.

The result shows freemium players get a better gameplay utility, the provider receives a gain of revenue, and the advertisements involve in the ecosystem. This model has a win-win-win result encouraging the promotion of the F2P games. Further improvement can also be built on this work; we do not take random variables of player’s choice in this work. It shows the potential of extending the model into a more realistic one.

ACKNOWLEDGMENTS

This work was supported by the Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS).

REFERENCES